
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

1

Efficient Privacy-Preserving Federated Learning
with Unreliable Users

Yiran Li, Student Member, IEEE, Hongwei Li (Corresponding author), Senior Member, IEEE,
Guowen Xu, Member, IEEE, Xiaoming Huang, Member, IEEE, Rongxing Lu, Fellow, IEEE

Abstract—Federated learning (FL) has emerged as a powerful
technology widely applied in Internet-of-Things (IoT). Recent-
ly, researchers have shown an increased interest in privacy-
preserving FL with unreliable users. The goal of such works is to
achieve private training under ciphertext mode while ensuring
that the FL model is mainly derived from the contributions of
users with high-quality data. However, the existing work is still
in its infancy, and the main challenge faced by many researchers
is how to achieve their schemes for meeting the demands of high
accuracy and efficiency. To combat that, we propose an efficient
privacy-preserving federated learning (EPPFL) scheme with
unreliable users. Specifically, we design a novel scheme to mitigate
the negative impact of unreliable users, where the targeted model
is guaranteed to be updated with high-quality data. Through
iteratively executing our “Excluding Irrelevant Components” and
“Weighted Aggregation”, the FL model converges rapidly while
taking limited communication and computation overhead. As a
result, not only the model accuracy can be optimized, but also
the training efficiency can be improved. Meanwhile, we conduct
a secure framework based on threshold Paillier cryptosystem,
which can rigorously protect all user-related private information
during the training process. Furthermore, extensive experiments
demonstrate our EPPFL with high-level performance in terms
of accuracy and efficiency.

Index Terms—Federated Learning, Privacy-Preserving, Unre-
liable Users.

I. INTRODUCTION

Deep learning (DL) has attracted a lot of interest in both a-
cademia and industry while being widely exploited in Internet-
of-Things (IoT) [1], [2]. However, when traditional centralized
DL meets IoT, the privacy issue gradually emerged as an
obstacle hindering the proliferation of deep learning in IoT.
Specifically, centralized learning requires edge users to provide
the service center with raw data, which usually contains
some private information, such as home address, identity
information, etc. Once the center is corrupted, users’ privacy
would not be guaranteed anymore. For addressing the privacy
issue, federated learning (FL) seems more powerful, since
users’ local original data is not shared to the center, instead,

Yiran Li, and Hongwei Li are with the school of Computer Science
and Engineering, University of Electronic Science and Technology of Chi-
na, Chengdu 611731, China, and also with Cyberspace Security Research
Center, Peng Cheng Laboratory, Shenzhen 518000, China (e-mail: yiran-
li842@foxmail.com; hongweili@uestc.edu.cn)

Guowen Xu is with the School of Computer Science and Engi-
neering, Nanyang Technological University (NTU), Singapore, (e-mail:
guowen.xu@ntu.edu.sg)

Xiaoming Huang is with the CETC Cyberspace Security Research Institute
Co., Ltd., Chengdu 610041, China, (e-mail: apride@gmail.com)

Rongxing Lu is with the Faculty of Computer Science (FCS), University
of New Brunswick (UNB), Canada, (e-mail: rlu1@unb.ca)

the gradient information, generated through training on users’
local data, will be uploaded. Such a mechanism can not only
protect users privacy to a certain extent but also minimize
the convergence rate and optimize the model accuracy. Due to
this, FL has promised IoT with enormous vertical applications,
such as smart city, smart home, e-healthcare, and so on.
Undoubtedly, FL has achieved remarkable success in IoT.

However, applying FL into IoT still faces some practical
obstacles. One of the most important issues is still the privacy
protection. State-of-the-art research [3] has specified that even
if a user only uploads gradient information, the user’s privacy
may still be leaked. An adversary may corrupt the central
server, revealing some properties of the training samples,
and even completely recovering the original data through
the leaked gradient information. Besides, IoT is a complex
ecosystem, usually consisting of enormous edge users, cascade
network, and service center. It is really hard to guarantee that
all these entities perform smoothly all the time. When FL is
implemented in IoT, the instability of equipment and irregular
operations may ease users to generate local data with low-
quality. Training with these data will negatively impact the
model accuracy, lower convergence rate, and even cause the
model divergence1. This phenomenon has also been found in
recent studies [4], [5]. Thereby, it is essential to implement an
appropriate method to handle these unreliable users. On the
other hand, IoT applications are usually required to perform
with low resource overhead and high processing efficiency.
However, FL takes distributed training method, requiring users
to iteratively upload tens of thousands of gradient parameters
to the central server. It is an insurmountable burden for
terminal equipment with limited resources. More seriously,
this phenomenon is more obvious under ciphertext because
the size of the ciphertext is usually several times that of the
plaintext. Therefore, to improve the practicality and security,
it is essential to design an efficient distributed learning frame-
work that provides privacy-preserving FL with robustness to
unreliable users.

To our best knowledge, only two recent works [6], [7] have
been proposed to alleviate the impact caused by unreliable
users. Zhao et al. [6] proposed the first approach named
SecProbe. The main idea of SecProbe is to perturb the loss
function of DNNs model through exploiting the technology
of differential privacy (DP). Their scheme can achieve a
good trade-off between accuracy and privacy, based on the

1In this paper, users who provide low-quality data will be considered as
unreliable users

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

2

custom data detection mechanism [8]. However, state-of-the-
art researches [9], [10] have proven that the challenge faced
current DP-based privacy-preserving deep learning still exists,
especially for balancing the utility and privacy in complicat-
ed learning missions. Therefore, under our setting, utilizing
differential privacy to construct the secure framework may
still cause privacy leakage, if high-level model accuracy is
guaranteed. Recently, Xu et al. [7] proposed a PPFDL scheme,
where they created a method of MethIU to alleviate the negative
impact of unreliable users, while protecting the privacy of all
user-related information through secure two-party computation
(2-PC). However, for achieving their PPFDL, two servers are
required to cooperate with each other, but cannot collude
with each other. Once the collusion occurs, the entire security
mechanism will be destroyed. Thereby, their scheme is not
practical in real-world scenarios.

Beyond the above-mentioned limitations, the existing efforts
have not considered a fundamental problem, that is, how
to reduce the overhead of edge users under ciphertext. As
described above, it is highly required to free the terminal
equipments from the trouble of resources, if the FL is guar-
anteed to run smoothly in IoT environments. Especially under
ciphertext mode, it is crucial to reduce the edge users overhead.
For addressing the above issues, we propose the EPPFL, an
efficient and Privacy-Preserving Federated Learning scheme,
which can efficiently handle users’ low-quality data in IoT.
We summarize the contributions of our EPPFL as follows:

• We conduct an efficient and secure aggregation frame-
work in the FL training process. Based on the masterly
utilization of the threshold Paillier cryptosystem, the
framework can strictly protect the privacy of all users’
related information, including gradients and the reliability
value of each gradient component.

• We propose a novel scheme (called SchUU) to alleviate
the negative impact caused by unreliable users. Through
iteratively executing our “Excluding Irrelevant Compo-
nents” and “Weighted Aggregation”, the FL model con-
verges rapidly with high-level accuracy while taking low
overhead, which can be very friendly for edge-users with
limited hardware resources.

• We present rigorous security proof for demonstrating the
high-level security of our EPPFL. Besides, we conduct
extensive experiments to specify the preferable perfor-
mance of EPPFL in terms of accuracy and efficiency.

The remaining parts of this paper are organized as follows.
We specify our research problem and review some primitives
in Section II. In Section III, we introduce our scheme in detail.
Then, we give a rigorous security proof in Section IV and a
comprehensive performance analysis in Section V. Next, we
discuss related works in Section VI. Finally, we draw our
conclusions in Section VII.

II. PROBLEM STATEMENT AND PRIMITIVES

A. System Overview

As shown in Fig. 1, two universal entities are considered
in our model, i.e., the cloud server and users, who cooperate
with each other to achieve the collaborative FL training [11].

 !"#$!%&'($!)%$'*+&%,-.'%#&'"-/(0,.

1+$!%&'$!2%$'(3%&/-#,.'

4$!*&'5-36-3

71#3-$/%)$-8

 !

1.-3'1.-3'

&%,%.-,
9!2%$

&%,%.-,
9!2%$

1.-3'!

&%,%.-,
9!2%$

1.-3'"

&%,%.-,
9!2%$

Fig. 1: System Overview

To be specific, all participants initially agree on a unified DNN
model with the initialized parameters of weights. Then, in
every iteration, each user calculates the local gradient through
training with its local dataset, and then uploads its local
gradient to the cloud server. After the cloud server achieves
the aggregation of the uploaded gradients, a global gradient is
generated, based on which the global DNN model is updated.
The above operations are executed iteratively until the DNN
model satisfies the convergence certification. For protecting
each user’s privacy during the process, a secure framework
is conducted in our EPPFL based on threshold Paillier cryp-
tosystem, which can strongly ensure that all operations on
local gradients are performed under ciphertext mode except
for some local operations.

Notes: We just consider only one server S in our system,
which serves as a platform for mainly achieving the secure
aggregation, i.e., one of its significant tasks is to calculate
a summation of the encrypted data uploaded from users.
Such a point-to-multipoint setting has been widely adopted
in previous works [12], [13], [6] on privacy-preserving FL.
Through integrating with the “Secure Aggregation Protocol
(SAP)” proposed in our EPPFL, this framework provides us
three outstanding advantages: (i) all the secure aggregation
operations are outsourced to the cloud server S, which can
greatly alleviate users’ pressure on computation, (ii) based on
the masterly exploitation of threshold Paillier cryptosystem,
our “SAP” only needs two rounds of interactions for obtaining
the final aggregation result, which can minimize the commu-
nication overhead between users and the cloud server, and (iii)
recent solutions [14], [15], [16] based on dual-server or multi-
server have also been proposed for addressing the privacy
issues in FL. However, all of their schemes require that at least
two servers are not allowed to collude with each other, which
is not practical in real-world scenarios. Our EPPFL, utilizing
a single-server setting, can effectively avoid this issue, being

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

3

more practical in actual applications. Meanwhile, base on the
secure framework in our EPPFL, a certain amount of users are
allowed to collude with the cloud server, while users’ privacy
can still be guaranteed.

Additionally, we consider a significant issue of unreliable
users during the FL training process. Under the consideration,
users learn a unified FL model with their local datasets, and
most of them are reliable, holding similarly high-quality data,
but a small portion of them is unreliable (e.g., user m shown in
Fig. 1), training with low-quality data. The data held by these
unreliable users may be not precise compared with others,
so that the gradients they conduct may deviate far from the
convergence trend. In real-world IoT applications, users may
obtain data through their sensors. However, due to the quality
discrepancy of sensors, there usually exist unreliable users in
an FL-based IoT. Considering the scenario where an Internet-
of-Vehicles (IoV) company intends to train a unified DNNs
model based on federated learning, thereby utilizing this model
for intelligently controlling vehicles. In real world, vehicles of
different brands may exploit various sensors to collect vehicle
information (e.g., speed, position, etc). The most vehicles are
usually equipped with high-quality sensors, which are sensitive
and highly precise, while some little-known vehicles may be
installed with low-quality sensors for some potential reasons,
such as saving costs, etc. As a result, the utilization of the
model generated with low-quality data may cause serious
mistakes (e.g., the vehicle is driven to deviate from the targeted
direction, and even the accelerator is misused as a brake, etc).

In this paper, we propose a novel scheme to alleviate
the negative impact of unreliable users for improving model
accuracy and minimizing convergence rate. Since redundant
irrelevant gradient components are excluded from the gradient
being uploaded, and the remaining components are appro-
priately aggregated, our scheme is friendly to edge users in
terms of computation and communication overhead. We will
introduce the detailed method in Section III.

B. Threat Model and Goals

During the FL training process, the security threats are
mainly derived from the inner participants (i.e., the cloud
server and users). For acquiring users’ private information, the
cloud server may try to infer the gradient information of each
user. Similarly, the same behavior may also occur among users.
Therefore, it is quite important to protect the privacy of users’
gradient information. Furthermore, in order to guarantee the
non-discriminative training process, the reliability information
of each user should also be guaranteed from being exposed to
any party (including the user himself). In our EPPFL, we make
an assumption that both the cloud server and users are honest-
but-curious, where each participant strictly abides by the out
established protocol to accomplish the training task. However,
some of them may try to exploit mastered prior knowledge
for compromising other ones’ data privacy. Additionally, in
our model, a certain number (less than the threshold value) of
users are permitted to collude with the cloud server. Based on
the threat model, we formally present our privacy demands as
follows.

• Privacy of gradient information: Each user’s gradient in-
formation, being potentially utilized to recover the user’s
private information (e.g., driving route, position, etc.),
may be leaked to adversaries, i.e., the cloud server and
other users. For protecting users’ privacy, it is essential
to encrypt each user’s local gradient, and operate them
under ciphertext mode, except for some local operations.

• Confidentiality of reliability information: For guaran-
teeing fairness and non-discrimination in the training
process, each user’s reliability information, denoting the
quality of user’s data, should also be protected against
the cloud server and all users.

C. Federated Learning

 !"#$!"#$

 !"#$!"#$

 !"#$!"#$

 !"#$!"#$

 !""#$%&'(#)*

+$,-.%&'(#) /-.,-.%&'(#)

 !"#$

 !"#$

 !"#$

 !"#$

 !"#$

Fig. 2: A typical fully connected neural network

1) Neural Network: Deep neural networks (DNNs) promise
various vertical services due to their heterogeneous network
structures. Without loss of generality, the fully connected
neural network (FCNN), as a representative of DNNs, is
introduced in this paper. As shown in Fig. 2, the left-to-
right pipeline structure is constituted by one input layer, one
output layer, and some hidden layers, where neurons between
two adjacent layers are fully connected by the weight ω.
Given a data set (x,y) labeled by y, the DNN can be
described as a function: f(x,ω) = ŷ, where the input is
x = {x1, x2, x3}, and the output is ŷ = {ŷ1, ŷ2}. The
main idea for training a DNN is to adjust the weight ω for
minimizing the distance between the output ŷ and the real
label y. This could be considered as a nonlinear optimization
problem, usually addressed by mini-batch stochastic gradient
descent (SGD) [17] described as follows.

According to the pseudo-code shown in Alg. 1, given a
training data set D ={(xi,yi); i = 1, 2...,N}, the loss function
can be defined as Lf (D,ω)= 1

N
∑N

i=1 Lf ((xi,yi),ω), where
Lf ((x,y),ω) =||y−f(x,ω)||2 =||y− ŷ||2, and || · ||2 denotes
the 2 norm of a vector.

In j-th iteration, firstly, a mini-batch Dj is randomly chosen
from D, hence the loss function can be defined as

Lf (Dj ,ωj) =
1

|Dj |
∑

(xi,yi)∈Dj

Lf ((xi,yi),ωj) (1)

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

4

Algorithm 1 Stochastic Gradient Descent.
Input: Training data set D={(xi,yi); i=1, 2...,N},

loss function Lf (D,ω)= 1
N

∑N
i=1 Lf ((xi,yi),ω),

learning rate θ.
Output: ω

1: Randomly choose an initial ω;
2: repeat
3: In j-th iteration, randomly choose mini-Dj ⊆ D;
4: for each (xi,yi) ∈ Dj do
5: compute g

(xi,yi)
j ← ∇Lf ((xi,yi),ωj)

6: end for
7: compute g∗,j ← 1

|Dj |
∑

(xi,yi)∈Dj
g
(xi,yi)
j ;

8: update ωj+1 ← ωj − θ · g∗,j
9: until An approximate minimum is obtained.

10: return ω;

where Lf ((xi,yi),ωj)=||yi − f(xi,ω)||2.
Then, the gradient g

(xi,yi)
j for a training pair (xi,yi) is

obtained through calculating the partial derivative of Lf with
respect to ωj . After the global gradient g∗,j is calculated
through averaging the aggregated

∑
(xi,yi)∈Dj

g
(xi,yi)
j , the

weight ω is updated as:

ωj+1 ← ωj − θ · g∗,j (2)

For obtaining the approximate minimum, which means satis-
fying the convergence condition, the above processes will be
executed iteratively.

For FL training, considering M participating users, each
user m∈[1,M] holds a local data set Dm, and the total data
set D can be defined as D=∪m∈MDm. In j-th iteration, a
mini-batch Dm

j is randomly chosen by user m, and the total
data set is Dj=∪m∈MDm

j . Next, each user m computes gmj
=
∑

(xi,yi)∈Dm
j
∇Lf ((xi,yi),ωj), and uploads the gmj to the

cloud server. Then the cloud server can update the weight as

ωj+1 ← ωj − θ ·
∑

m∈M gmj∑
m∈M |Dm

j |
(3)

Finally, the cloud server broadcasts ωj+1 to each user
to update their local neural network. The above interactive
process between the cloud server and users will be executed
iteratively until the preset convergence condition is satisfied.

Notes: The Eqn. (3) shows us that, in j-th FL training
iteration, the cloud server mainly focuses on aggregating all
the gradients of gmj uploaded by each user m, calculating

an average value
∑

m∈M gm
j∑

m∈M |Dm
j | , and then obtaining the global

weight to update the unified DNN. However, the above process
has no consideration of the quality of the data sent by users,
i.e., actually some unreliable user may upload some data with
low quality. In this paper, a novel method will be introduced
for handling these unreliable users.

D. Threshold Paillier Cryptosystem

In our scheme, the (t, n)-threshold Paillier cryptosystem
[18] is utilized for constructing our secure framework due to its
three significant features: (i) asymmetric cryptosystem: public
key and private key are different, where public key is used for

encryption, while private key is for decryption, (ii) threshold
property: only more than or equal to a certain number (i.e.,
t) of private key owners can decrypt the ciphertext, and
(iii) additive homomorphic property: plaintext addition can be
achieved by ciphertext multiplication. These above features
can provide our scheme with abundant functionalities and
adequate privacy protection.

In this asymmetric cryptosystem [18], the public key
pk=(z, h) is open to all the participants, while the secret key
is divided into n keys based on the method of key generation
proposed in the paper [18], denoted as (sk1, sk2, ..., skn) and
privately kept by each unique user, where z=(1 + h), and h
=pq, where p,q are two primes.

For encrypting a plaintext g to obtain a ciphertext c, the
module exponential operation is executed with the public key
pk as follows,

c = Epk(g) = zgrhmod h2 (4)

where r is a private random number belonging to the multi-
plicative group Z∗

h2 , which consists of invertible elements of
group Zh2 . According to the above Eqn. (4), the homomorphic
properties of this cryptosystem can be described as,

c = Epk(gi + gj) = zgi+gj (rirj)
h
mod h2

= Epk(gi) · Epk(gj)
(5)

c = Epk(a · gi) = zagiri
ahmod h2

= Epk(gi)
a

(6)

where gi, gj are two plaintexts to be encrypted, and ri, rj are
private random number belonging to Z∗

h2 .
The decryption process falls into two main steps. Firstly,

the unique private secret key ski will be respectively utilized
to conduct a secret share,

si = c2∆skimod h2 (7)

where ∆ = n!. Then t shares of si are combined, and
the plaintext is calculated through Lagrange interpolation
algorithm and the “extraction algorithm” in Ref. [18].

Please note that in this (t, n)-threshold cryptosystem, only
more than or equal to t participants’ cooperation can decrypt
a ciphertext c. Any single participant or even a group of at
most t− 1 participants doesn’t have the complete private key,
being unable to correctly decrypt the ciphertext.

III. OUR PROPOSED SCHEME

In this section, we introduce the detailed technology of our
EPPFL, which enables the cloud server and users to conduct
the encrypted SchUU under ciphertext mode while achieving
the expected privacy demands, i.e., privacy protection for the
user’s private information of local gradient and reliability.
We first introduce our proposed SchUU, then we describe our
“Secure Aggregation Protocol”, a significant protocol, which
is frequently invoked in our scheme. Finally, we present the
detailed method of how to utilize the protocol for accomplish-
ing each step of the EPPFL.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

5

A. Scheme for Handling Unreliable Users

As mentioned in Section. II-C, the global FL model is
obtained through collaborative training between the cloud
server and users. Specifically, during each iteration of the
training process, the global gradient of the model is updated by
averaging the aggregated local gradients shared by users. The
gradient is essentially a vector constituted by components in
multiple dimensions, and together these components determine
the direction of the gradient. For minimizing convergence rate
and improving model accuracy, it is essential to find a metric
to generate the optimal global gradient in each iteration, in this
paper, it is named as ideal gradient, which will be obtained by
optimal operations (not just averaging) on the local gradients.

Indeed, for obtaining the ideal gradient, the issue of unreli-
able users has to be considered. As far as we know, unreliable
users may achieve the training with the data of low-quality,
and the existing works [19], [20] show that the direction of the
gradient generated by unreliable users may deviate far from
the collaborative convergence trend, where two significant
properties of the gradient may exist: (i) in some dimensions
of the gradient, the signs of components may be inconsistent
with the signs of these components in the ideal gradient, which
should be considered as irrelevant, and (ii) huge discrepancy
in values may exist between local components and compo-
nents in the ideal gradient. Both of these two factors will
impair the model training, resulting in slower convergence
and even divergence. Therefore, for mitigating the impact
of unreliable users to generate the global ideal gradient,
our first intuition is to exclude the irrelevant components.
Then for addressing the discrepancy, we tend to first find an
metric to estimate the reliability of remaining components,
and then obtain a weighted aggregation result. In this paper,
we propose a scheme named SchUU, which mainly consists
of two parts: Excluding Irrelevant Components and
Weighted Aggregation, which will be executed iteratively
for generating the ideal gradient, introduced as follows.

In our settings, the data held by each user is independent
and identically distributed (IID). Specifically, we consider
that there are M users participating in the FL training,
and after performing SGD on the local data set, each us-
er obtains a gradient containing L components denoted as
gm=(g1m, g2m, ..., glm, ..., gLm), accordingly, the global ideal gra-
dient is defined as g∗=(g1∗, g

2
∗, ..., g

l
∗, ..., g

L
∗). During the FL

training, each local gradient gm will be uploaded to the cloud
server, being aggregated to obtain the ideal gradient g∗ for
updating the global DNN. Based on our settings, these two
significant parts of SchUU are described in detail.

1) Excluding Irrelevant Components: As discussed above,
the signs and values of the components in a gradient deter-
mines the direction of the gradient, especially, the sign of a
component determines whether the model should be increased
or decreased along the dimension of the component. Based on
this, our first intuition for excluding irrelevant components is
to compare the signs of components between local gradient
and ideal gradient. On the other hand, during FL training
process, the global ideal gradient is updated in each iteration,
so that another issue is how to choose the ideal gradient.

Algorithm 2 Excluding Irrelevant Components.
Input: local gradient gm=(g1m, g2m, ..., glm, ..., gLm),

global gradient g∗=(g1∗, g
2
∗, ..., g

l
∗, ..., g

L
∗).

1: Initialize global gradient g∗;
2: In j-th iteration, given the global gradient g∗,j−1;
3: for each glm,j ∈ gm,j do
4: if I(glm,j , g

l
∗,j−1)=0 then

5: glm,j ← null; ◃ exclude irrelevant components
6: end if
7: end for

Intuitively, we can compare local gradient with the global ideal
gradient in the current iteration. However, the global ideal gra-
dient is generated on the aggregated result, which means the
comparison will be achieved after all gradients being uploaded
by users, so that the process would be full of redundancy and
work inefficiently. According to the research [21], we know
that the global training model actually converges steadily and
smoothly, which means the discrepancy of gradients between
two sequential iterations is small. Thereby, it is possible to
measure the relevance by comparing the gradients between two
sequential iterations, that is, each user can compare the signs
of components between their local gradients and the previous
global ideal gradient.

Specifically, assuming each user m holds a local gradient of
gm. Given a global ideal gradient g∗, we introduce the algo-
rithm of “Excluding Irrelevant Components (EIC)” through the
pseudo-code in Alg. 2. We first define a function of I(gam, gbm)
to compare the signs of two components of gam and gbm as
follows,

I(gam, gbm) =

{
1, sgn(gam) = sgn(gbm)

0, else
(8)

where sgn(·) is a sign extraction function to obtain the sign
of the component. Then we utilize I(gam, gbm) to compare the
signs of each glm and the global gl∗. If the result is 0, the
component glm will be identified as irrelevant, being assigned
an invalid value.

Notes: The “EIC” process will be performed locally, i.e.,
each user will compare their local gradients with the global
ideal gradient to determine whether to exclude the local
components. Hence, there is no need to consider users’ privacy
issues during the process. In addition, during the aggregation
process, the cloud server cannot complete the summation until
all users’ gradients have been uploaded. Due to this, for ensur-
ing the robustness of the subsequent aggregation process, the
irrelevant components will not be just imprudently eliminated,
but still be uploaded and labelled invalid. Moreover, during the
practical training process, most of the data can be considered
with high quality, so even if we exclude some irrelevant
components, the model can still keep convergency. This can
also be specified through our experiment results in Section. V.

2) Weighted Aggregation: “EIC” has shown us how to
exclude irrelevant components, in this section, we introduce
how to achieve weighted aggregation for further generating
the ideal gradient in each iteration. The ideal gradient is

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

6

intuitively an aggregated result obtained through the gradi-
ents uploaded from users, and each component in the ideal
gradient is also an aggregation result, i.e., if we obtain all the
components in the ideal gradient, we can construct the ideal
gradient. To be specific, the process of weighted aggregation
can be divided into two parts as follows:

(i) Reliability Estimation: For obtaining the ideal com-
ponent, we first estimate the reliability of each component
uploaded by users. Given the estimated aggregated ideal
component of gl∗, each user’s reliability Rm can be updated
as follows:

Rl
m = log(

∑m=M
m=1 dis(glm, gl∗)

dis(glm, gl∗)
) (9)

where dis(a, b) is for measuring the distance between two
values of a and b, denoted as a squared distance function:

dis(glm, gl∗) = (glm − gl∗)
2 (10)

According to existing works [21], [22], the results show that
even if IID data is utilized for training DNN by users, disparate
data will generate different gradient components, which may
cause the discrepancy in the scalars and signs of components
in the same dimension. According to Alg. 2, these components
whose signs are different from the components in the global
ideal gradient will be excluded from the uploaded gradients.
So that, we can always keep the sign of the remaining local
component glm same as the global component gl∗, so as to
guarantee the model convergence. Therefore, it is reasonable
to utilize dis(glm, gl∗) to measure the distance for further
reliability estimation, while guaranteeing convergence.

Notes: Based on Eqn. (9), the reliability of a local compo-
nent is determined by the distance from the ideal component,
i.e., the shorter distance, the higher reliability the component
will be assigned. This mechanism is reasonable under IID
situation, but not for non-IID setting, since it cannot funda-
mentally solve the problem of gradient discrepancies caused
by different data distributions through directly measuring the
distance, if there exist large discrepancies among different
gradients. Additionally, if a small portion of users whose data
distributions are significantly different from others, they may
be considered as unreliable and excluded from our system,
since our scheme focuses on the IID setting. Meanwhile, we
have experimentally demonstrated that under the assumption
of the IID data setting, erasing the data of users who are
obviously contrary to the distribution of the overall data during
the training process is beneficial to improve the accuracy of
the DNN model. More details are presented in Section V-B.
Furthermore, some state-of-the-art works [23], [24], [25], [26]
have also been proposed for federated learning with non-IID
data. However, there is still a long way to implement these
schemes under ciphertext mode, especially for considering
the issue of handling unreliable users. We leave this exciting
research in the future work.

(ii) Gradient Update: Given each user’s reliability Rl
m,

the ideal component of the ideal gradient is updated in each
dimension as follows:

gl∗ =

∑m=M
m=1 R

l
mglm∑m=M

m=1 Rl
m

(11)

Notes: According to Eqn. (11), in the aggregation process,
the higher reliability is assigned for the component glm,
the more values of the component will be counted. The
result implies that the final aggregated result is primarily
derived from the data shared by reliable users. For prac-
tical applications, the glm can be considered unreliable if

Rl
m−minj∈[1,M] Rl

j

maxs∈[1,M] Rl
s−minj∈[1,M] Rl

j

< β, where β is a threshold value
jointly determined by users. The similar setting is also applied
in researches [21], [20].

Algorithm 3 Scheme for Handling Unreliable Users.
Input: Local gradient gm=(g1m, g2m, ..., glm, ..., gLm),

gradient set Gm={gm;m = 1, 2, ...,M},
global ideal gradient g∗=(g1∗, g

2
∗, ..., g

l
∗, ..., g

L
∗),

global weight ω∗=(ω1
∗, ω

2
∗, ..., ω

l
∗, ..., ω

L
∗),

learning rate θ.
Output: ω∗ (global weight)

1: Initialize global gradient g∗ and global weight ω∗;
2: repeat
3: for (each gm ∈ Gm) do
4: Exclude irrelevant components through comparing

with previous global gradient (e.g., Alg. 2);
5: end for
6: repeat
7: for (each gm ∈ Gm) do
8: Update the current reliability of relevant compo-

nents (e.g., Eqn. (9));
9: end for

10: for (each l-th component) do
11: Update the ideal component based on current reli-

ability (e.g., Eqn. (11));
12: end for
13: until Convergence criterion is satisfied;
14: Update current global weight (e.g., Eqn. (3));
15: until An approximate minimum is obtained;
16: return ω∗.

Nextly we describe how to execute our SchUU through
the pseudo-code shown in Alg. 3. Considering M users
participate the FL training, each user holds a local gradient
gm=(g1m, g2m, ..., glm, ..., gLm), and all users’ gradients consti-
tute a gradient set Gm={gm;m = 1, 2, ...,M}. We first ini-
tialize the global ideal gradient g∗=(g1∗, g

2
∗, ..., g

l
∗, ..., g

L
∗) and

global weight ω∗=(ω1
∗, ω

2
∗, ..., ω

l
∗, ..., ω

L
∗). Then in every itera-

tion, firstly, we utilize “EIC” to exclude irrelevant components
of each user’s local gradient gm by comparing it with previous
global gradient. Secondly, we calculate the reliability of each
remaining relevant component based on Eqn. (9). Thirdly, in
each dimension of the global ideal gradient, according to the
reliability of component, we compute the global component
through Eqn. (11), and obtain the global ideal gradient. Finally,
we update current global weight based on the generated ideal
gradient. The above processes will be iteratively executed until
an approximate minimum is obtained.

Notes: Two significant parameters of the gradient compo-
nent are considered in our scheme, i.e, signs, and values.
Specifically, the component, whose sign is inconsistent with

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

7

the ideal component, will be considered irrelevant, being ex-
cluded during the training process. In addition, the remaining
relevant component will be assigned an appropriate reliability
value, i.e., the component, whose value is farther from the
value of the ideal component, will be endowed with less
reliability value, and vice versa. Intuitively, this is reasonable
for that the negative impact conducted by unreliable users
could be minimized through excluding components and reduc-
ing reliability for these gradients generated from unreliable
users. In Section.V, the experiment results demonstrate the
superiority of our approach in terms of model accuracy and
convergence rate. Additionally, excluding components will be
executed locally, i.e., each user will exclude their local irrele-
vant components by itself, that there is no need to consider the
privacy issues. Nevertheless, weighted aggregation is achieved
through the cooperation between the cloud server and users.
During the process, not only the confidentiality of each user’s
gradient data should be protected, but also the reliability of
each component needs to be guaranteed for ensuring the non-
discrimination of the training.

Next, we will introduce how our EPPFL performs SchUU
under ciphertext mode, thereby obtaining the expected privacy
protection while guaranteeing our scheme’s high practicability.

B. Secure Aggregation Protocol
Actually, our “Secure Aggregation Protocol (SAP)” is

derived from the threshold Paillier cryptosystem. Consider-
ing each user m∈[1,M] holds a data value vm∈Zh, after
executing our “SAP”, the final summation of these val-
ues will be obtained, while each user’s value being guar-
anteed private against the cloud server and other user-
s. To be specific, as shown in Fig. 3, in the first step,
each user m encrypts value vm and sends the ciphertext
Epk(vm) to the cloud server S. Then, to acquire a sum-
mation value under ciphertext, the cloud server S calculates
c=Epk(

∑m=M
m=1 vm)=Πm=M

m=1 Epk(vm) based on Eqn. (5). The
equation implies that the summation of plaintexts can be
obtained through the multiplication of ciphertexts. Next, the
server S randomly selects t users and sends the ciphertext c
to them. After receiving the the ciphertext c, each selected
user m calculates the secret share sm based on c through
the Eqn. (7), and then sends sm to the cloud server again.
Finally, S combines t secret shares from users, and obtain
the summation

∑m=M
m=1 vm through the encryption on the

combined result.
Notes: This protocol can be briefly modified for supporting

users’ dropping out, through slightly changing the processing
mechanism. Specifically, in step. 3, instead of randomly se-
lecting t users, the cloud server S sends c to each user m.
Then each user m is required to upload the secret share sm to
the cloud server. Until the number of received secret shares is
greater than t, the cloud server S randomly selects t shares for
decryption. Therefore, even if some unstable users are off-line
during the process, the summation value can still be decrypted.

C. Construction of EPPFL
The specific workflow of EPPFL is described in Fig. 4, con-

taining two phases, i.e., system setup and encrypted SchUU.

Input: Each user’s value vm ∈ Zh, m ∈ [1,M].
Output: Aggregation value

∑m=M
m=1 vm.

Procedure:
userm:

1. Based on Eqn. (4), each user’s vm is encrypted as
Epk(vm), nextly being sent to the cloud server S.

S:

2. S calculates c=Epk(
∑m=M

m=1 vm)=Πm=M
m=1 Epk(vm) ac-

cording to Eqn. (5).
3. Server S randomly selects t users, sending c to them.

userm:

4. Each selected user m calculates the secret share sm of c
according to Eqn. (7), then sends sm to the cloud server.

S:

5. Server S combines t secret shares from users to get the
summation

∑m=M
m=1 vm.

Fig. 3: SAP: Secure Aggregation Protocol

1) System Setup: According to the threshold Paillier cryp-
tosystem, given the security parameter k, a trusted agent (TA)
is required to generate a public key pk for all the participants
and a series of private keys (sk1, sk2, ..., skm, ..., skM) for
each user m∈[1,M]. The public key pk is broadcasted to
all the participants (the cloud server S and each user m),
while the private key skm is respectively and secretly kept
by each user m. For initializing the DNN model, the global
weight ω∗=(ω1

∗, ω
2
∗, ..., ω

l
∗, ..., ω

L
∗) and global ideal gradient

g∗=(g1∗, g
2
∗, ..., g

l
∗, ..., g

L
∗) will be obtained through pre-training

the DNN model. This is a universal method widely applied in
works such as [19], [21].

2) Encrypted SchUU: Applying threshold Paillier cryp-
tosystem requires that the plaintext should belong to an integer
ring, however, in our scheme, the value (e.g., the gradient
component glm) needed to be encrypted may not be integers.
For addressing this challenge, we utilize a rounding factor
10N (a magnitude of 10) to scale each glm to an integer
10N ·glm whenever needed, where N is a positive integer.
Additionally, for the sake of simplicity, the ã is utilized to
denote the ciphertext of a, calculated through Epk(a). As
shown in Fig. 4, our encrypted SchUU can be divided into four
main parts: (i) excluding irrelevant components, (ii) encrypted
reliability estimation, (iii) encrypted gradient update, and (iv)
weight update. All the detailed technologies of each part are
described as follows.

(i) Excluding irrelevant components: In this part,
step. 1∼2 is executed for excluding irrelevant components.
Firstly, each user m∈[1,M] obtain a local gradient gm through
training the unified DNN with its local dataset based on SGD
algorithm. Then each user m compare each local gradient
component glm with previous gl∗ to exclude the irrelevant
components based on our “EIC” algorithm. Since this work
is achieved locally and respectively by each user m itself, and
all the operations can be executed under plaintext mode, there

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

8

Implementation of EPPFL

Setup: Given the security parameter k, the trusted Third Party (TA) generates a public key pk and a series of private keys (sk1, sk2, ..., skm, ..., skM)
based on the Paillier (T ,M)-threshold cryptosystem. The public key pk is broadcasted to all the participants (the cloud server S and each user m), and
each private key skm is respectively and secretly kept by each user m. Initialize the DNN model with global weight of ω∗=(ω1

∗, ω
2
∗, ..., ω

l
∗, ..., ω

L
∗)

and global ideal gradient g∗ = (g1∗, g
2
∗, ..., g

l
∗, ..., g

L
∗).

Encrypted SchUU:
userm:
1. Each user m trains the unified DNN to obtain the gradient with the current local data set, through the SGD algorithm.
2. Each user m compares each current local gradient component glm with previous gl∗ to exclude the irrelevant components based on our “EIC” algorithm.
3. Each user m calculates the distance between valid local gradient component and the global ideal component gl∗ as dis(glm, gl∗).

4. Each user m encrypts each dis(glm, gl∗) as d̃islm= Epk(dis(g
l
m, gl∗)), and encrypts log(dis(glm, gl∗)) as ˜log(dislm)=Epk(log(dis(g

l
m, gl∗)))

m ∈ [1,M] and l ∈ [1,L], and then send both of them to the cloud server.
S:

5. For each l-th component, S multiplies the ciphertexts as ˜sumdisl=Πm=M
m=1 Epk(dis(g

l
m, gl∗))= Epk(

∑m=M
m=1 dis(glm, gl∗)), based on our “SAP”

protocol the cloud server obtain a plaintext of the sum sumdisl.

6.Then S encrypts log(sumdisl) as ˜log(sumdisl)=Epk(log(sumdisl)).

For each user m, the cloud server S calculates R̃l
m=Epk(Rl

m)= ˜log(sumdisl)· ˜log(dislm), and sends each R̃l
m to each user m.

userm:
7. Each user m calculates Epk(Rl

m · glm)= Epk(Rl
m)g

l
m and sends them to the cloud server.

S:
8. S calculates Πm=M

m=1 Epk(Rl
mglm) and Πm=M

m=1 Epk(Rl
m), and then executes the “SAP” protocol to obtain the plaintexts of

∑m=M
m=1 Rl

mglm and∑m=M
m=1 Rl

m. Nextly, S calculates gl∗ =
∑m=M

m=1 Rl
mglm∑m=M

m=1 Rl
m

9. S obtains all the gl∗, and construct the current global ideal gradient g∗.
S, userm:
10. S and each userm execute step 3∼9 iteratively until the convergence criterion is satisfied and then update the global ideal gradient g∗.
S:
11. Updates the global DNN model (i.e., current global weight ω∗) based on Eqn. (3), and broadcasts g∗ and ω∗ to each user m.
S, userm:
12. S and userm execute step 1∼11 iteratively until an approximate minimum is obtained.

Fig. 4: Detailed description of EPPFL

is no need to consider the privacy issues for users in this part.
(ii) Encrypted reliability estimation: To achieve the

privacy-preserving reliability estimation, step. 3∼6 is execut-
ed. Based on Eqn. (9) and homomorphic property of threshold
Paillier cryptosystem, the encrypted reliability R̃l

m for each
gradient component glm is updated as follows.

R̃l
m = Epk(Rl

m) = Epk(log(

∑m=M
m=1 dis(glm, gl∗)

dis(glm, gl∗)
))

= Epk(log(

m=M∑
m=1

dis(glm, gl∗)) · Epk(log(dis(g
l
m, gl∗)))

−1

(12)

where the dis(glm, gl∗) denotes the distance between the each
local gradient component glm and the global ideal component.
and sumdisl=

∑m=M
m=1 dis(glm, gl∗) is the distance summation

of all users on l-th component. According to Eqn. (12), the
specific steps are introduced as follows.

Firstly, each user m∈[1,M] calculates the distance
dis(glm, gl∗) between each l-th local gradient component glm
and global ideal component gl∗, where l∈[1,L]. Please note
that, this process is achieved locally under plaintext mode.
Then, each user m encrypts each distance dis(glm, gl∗) and
log(dis(glm, gl∗)) respectively as d̃islm= Epk(dis(g

l
m, gl∗)) and

˜log(dislm)=Epk(log(dis(g
l
m, gl∗))), and then sends them to the

cloud server S.
After receiving these ciphertexts from users, the cloud server

S cooperates with users to calculate the plaintext of the sum

sumdisl based on our “SAP” protocol.
Nextly, the cloud server S calculates log(sumdisl), and

encrypts it as ˜log(sumdisl)=Epk(log(sumdisl)). Finally, the
encrypted reliability R̃l

m is obtained for for each user m as
follows.

R̃l
m = Epk(Rl

m) = ˜log(sumdisl) · (˜log(dislm))−1 (13)

(iii) Encrypted gradient update: After the encrypted re-
liability R̃l

m being generated for each user m, the step. 7∼9
will be run for privately updating the current gradient. Each
user m first calculates the ciphertexts of the component value
multiplied by reliability according to Eqn. (6), using the
following formula:

Epk(Rl
m · glm) = Epk(Rl

m)g
l
m (14)

Then each user m sends them to the cloud server.
After receiving each user’ ciphertexts, the cloud server S

executes the “SAP” protocol to respectively obtain the plain-
texts of

∑m=M
m=1 Rl

mglm and
∑m=M

m=1 Rl
m, and calculates each

current updated gradient component as gl∗ =
∑m=M

m=1 Rl
mgl

m∑m=M
m=1 Rl

m

.
The part (ii) and (iii) will be executed iteratively until the
convergence criterion is satisfied, and then the ideal gradient
g∗ is privately generated.

(iv) Weight update: The global DNN model is updated in
step. 11 through Eqn. (3), and the updated ω is distributed to
each user m for local updating. As shown in Fig. 4, S and each

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

9

userm perform step. 1∼11 iteratively until an approximate
minimum is obtained.

Notes: For the simplicity of description, it is assumed that
no user is off-line during the execution process of our EPPFL.
However, it has robustness to users being off-line during the
entire implementation. Note that our “SAP” can be divided
into two parts: encrypted aggregation and decryption, which
are two independent segments, i.e., the users participating in
the encrypted aggregation and the users participating in the
decryption may be different. As discussed in Sec.III-B, our
“SAP” can be easily adjusted to support users dropping out
after they have successfully uploaded the encrypted values
to be summed. Another issue is the failure of uploading
encrypted values, which means not all required users are able
to upload the encrypted values for encrypted aggregation. To
combat this, the preliminary method is to set a waiting time
threshold. However, if some users still can not achieve the
uploading tasks timely, they will be labelled as invalid users,
so that the subsequent ciphertext operations (e.g., execute
“Encrypted Reliability Estimation” and “Encrypted Gradient
Update”) will be not affected by them. As a result, our EPPFL
can still be perform by the cloud server and the remaining
valid users. Additionally, if the majority of off-line users are
reliable, the model accuracy will be negatively impacted and
vice versa. However, in real-world applications, we can hardly
confirm whether the off-line users are reliable or unreliable.
For convenience, off-line users’ effect on training accuracy
will not be considered in our scheme.

IV. PRIVACY GUARANTEES

According to the analysis in Sec.II-B, the security threats
mainly come from the participants (i.e., the cloud server and
users). Therefore, the goal of EPPFL is to protect the each
user’s gradients and the reliability of each gradient component
from being exposed to any other participants. Besides, in our
encrypted SchUU, the 1st part and 4-th part consider no privacy
issues, hence, the privacy analysis focuses on the parts of
“Encrypted Reliability Estimation” and “Encrypted Gradient
Update”. Additionally, since the security of our EPPFL is
derived from our proposed “Secure Aggregation Protocol”, the
privacy analysis can be started from this protocol.

In this protocol, all exchanging processes are executed
between the cloud server and users, under ciphertext mode.
Although user m’s ciphertext Epk(vm) may be observed by
other users, it cannot be decrypted by these users due to the
security of (t, n)-threshold Paillier cryptosystem adopted in
our “SAP” (i.e., only more than t users with secret shares
can decrypt the ciphertext). Thus, each user’s privacy can be
protected from other users. Similarly, the ciphertext Epk(vm),
uploaded by each user m, leaks no useful information to
the cloud server, the only value that can be obtained is the
summation result

∑m=M
m=1 vm. Based on the above analysis,

the formal proof is presented as follows.
Proposition 1: (Against honest-but-curious cloud server and

each user m ∈ M) There exists a PPT simulator SIM such
that for the given security parameter k, threshold parameter
t, and the participating user set M = {1, ...,M}, the output
of SIMk,t,M

m,S is computationally indistinguishable from the

output of REALk,t,M
m,S , even if at most t − 1 users collude

with S:

SIMk,t,M
m,S ≈ REALk,t,M

m,S (15)

Proof: A standard hybrid argument [27], [13] is utilized
for proving the theorem. Firstly, a simulator SIM is defined
through a series of (polynomially many) subsequent modifica-
tions to the random variable REAL, then the indistinguisha-
bility between the output of SIM and the output of REAL
is proven. The detailed proof is presented as follows.

hyb1 We initialize a random variable whose distribution is
exactly the same as REAL, and then the joint view
of each user m ∈ M and the cloud server S will be
obtained in a real execution of the protocol. For the sake
of simplicity, the Rand(a) is denoted as a random value
with the same length of a.

hyb2 In this hybrid, for each user m ∈M , instead of encrypt-
ing the original dis(glm, gl∗) and log(dis(glm, gl∗)), each
user m encrypts randomly selected Rand(dis(glm, gl∗))
and Rand(log(dis(glm, gl∗))) with public key pk under
threshold Paillier cryptosystem. Based on the security
property of threshold Paillier cryptosystem, the encrypted
ciphertext leaks no useful information, and the views of
SIM and REAL have the same distribution. Therefore,
the indistinguishability SIMk,t,M

m,S ≈ REALk,t,M
m,S is

guaranteed in this hybrid.
hyb3 In this hybrid, the input of our “SAP” protocol is

replaced, which means the cloud server S computes
Epk(Rand(

∑m=M
m=1 glm)) instead of Epk(

∑m=M
m=1 glm).

Based on the security property of threshold Paillier
cryptosystem, the encrypted ciphertext leaks no useful
information, and the views of SIM and REAL have
the same distribution. Therefore, the indistinguishability
SIMk,t,M

m,S ≈ REALk,t,M
m,S is guaranteed in this hybrid.

hyb4 In this hybrid, the server S encrypts Rand(Rl
m) instead

of Rl
m. Based on the security property of threshold Pailli-

er cryptosystem, the encrypted ciphertext leaks no useful
information, and the views of SIM and REAL have
the same distribution. Therefore, the indistinguishability
SIMk,t,M

m,S ≈ REALk,t,M
m,S is guaranteed in this hybrid.

hyb5 In this hybrid, each user m calculates Epk(Rand(Rl
m ·

glm)) instead ofRl
m·glm. Based on the security property of

threshold Paillier cryptosystem, the encrypted ciphertext
leaks no useful information, and the views of SIM and
REAL have the same distribution. Therefore, the indis-
tinguishability SIMk,t,M

m,S ≈ REALk,t,M
m,S is guaranteed

in this hybrid.
hyb6 In this hybrid, the input of our “SAP” protocol

is replaced from
∑m=M

m=1 Rl
mglm and

∑m=M
m=1 Rl

m to
Rand(

∑m=M
m=1 Rl

mglm) and Rand(
∑m=M

m=1 Rl
m), Based

on the property of threshold Paillier cryptosystem, the
indistinguishability SIMk,t,M

m,S ≈ REALk,t,M
m,S is guar-

anteed in this hybrid.
As described above, based on the security properties of

our “SAP” and threshold Paillier cryptosystem, we prove
that there is a PPT simulator SIM whose output (i.e.,
SIMk,t,M

m,S) is computationally indistinguishable from the out-

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

10

TABLE. 1: Functionality Comparison with existing works

Scheme
Function Users’ privacy

protection
Resistance to

collusion
Robust to users
being off-line

Support for
unreliable users

Server setting Threat model

SecProbe [6] " " 7 " Single-Server Honest-but-Curious
PPFDL[7] " 7 " " Dual-Server Honest-but-Curious
PPML [13] " " " 7 Single-Server Honest-but-Curious
PPDL [12] " 7 7 7 Single-Server Honest-but-Curious

EPPFL " " " " Single-Server Honest-but-Curious

put of REALk,t,M
m,S . Furthermore, through the view of simu-

lation, the plaintext data of each user m will not be exposed
to the cloud server or other users under these interactions. �

V. PERFORMANCE EVALUATION

In this section, we discuss the performance of our EPPFL
through extensive experiments, whose settings are as fol-
lows: we utilize (⌊n2 ⌋,n)-threshold Paillier cryptosystem in our
EPPFL, which is implemented through the Paillier Threshold
Encryption Toolbox2. We run our experiments under the en-
vironment with Java 1.7.0, where the “Cloud” is simulated by
the Lenovo Server with Intel(R) Xeon(R) (6-CORE 2.10GHZ
CPU, 32GB RAM), running Ubuntu 18.04, and Huawei hon-
or30 (8-CORE, 8GB RAM) is utilized to simulate the edge
users. We achieve the training and testing tasks based on
MNIST database3, which has 60,000 training examples and
10,000 testing examples, while the selected neural network
consists of 2 fully connected layers, 2 convolutional layers,
and 1 average pooling layer. For comprehensively evaluating
our EPPFL, we first conduct the functionality comparison, and
then we achieve the comparisons of accuracy and overhead of
computation and communication.

A. Functionality

For specifying the superiority of our EPPFL in terms of
functionality, we compare our EPPFL with four state-of-the-
art approaches of privacy-preserving FL, i.e., SecProbe [6],
PPFDL[7], PPML [13], and PPDL [12]. As shown in Table. 1,
the SecProbe [6], as the first privacy-preserving method for
handling unreliable users during federated training can be
resistant to the collusion among the cloud server and users
while protecting users’ privacy. However, it cannot support
users to be off-line during the FL training process. As the
following work of SecProbe [6], PPFDL [7] can also handle
unreliable users, meanwhile, it supports users being off-line
during the whole execution process. However, the dual-server
setting applied in their scheme requires that the two servers are
not allowed to collude with each other. Once collusion occurs,
users’ privacy will not be protected any more, being leaked
to these two cloud servers. This is not practical in real-world
applications. PPDL [12] utilizes additively homomorphic en-
cryption for implementing their federated learning. Due to that,
all users exploit the same secret key to encrypt parameters
for privacy protection, their scheme requires that there is no

2http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
3http://yann.lecun.com/exdb/mnist/

collusion between users and the cloud server. Besides, the
cases of handling off-line users and unreliable users during
the training process are out of their scope of works. PPML
[13], exploiting the secret sharing and masking method to
guarantee users’ privacy of gradients, is the first work with
both robustness to users being off-line and resistance to the
collusion between users and the cloud server. However, PPML
just focuses on how to protect the private gradient information,
without any consideration of handling unreliable users.

Compared with the above approaches, we utilize the thresh-
old Paillier cryptosystem to construct the fundamental privacy-
preserving framework of our EPPFL. Under our single-server
setting, it can rigorously protect users local gradient and relia-
bility information. Meanwhile, due to the threshold property of
this framework, even if multiple users collude with the cloud
server, users’ private information will still be guaranteed from
being leaked, besides, this framework can also be robust to
users being off-line in the training process, guaranteeing the
private training process to be achieved smoothly. Furthermore,
for improving the training accuracy and efficiency, we propose
a novel scheme SchUU to alleviate the negative impact of
unreliable users.

B. Accuracy

We discuss the accuracy of our EPPFL in this part. For ob-
taining convincing experiment results, we compare our scheme
with two representative methods, i.e., OFL [22] and SecProbe
[6]. This is reasonable. OFL [22] is the original model without
any additional operations on unreliable data, performing model
training under plaintext mode. Thereby, through comparing
OFL with our EPPFL, we can present the specific effect of our
scheme for handling unreliable users. Additionally, SecProbe
is the first scheme for achieving privacy-preserving FL with
unreliable users. According to the comparison results, we can
clearly specify the discrepancy in effect generated by these
two different types of methods.

In our experiments, the accuracy results are obtained on
different proportions (P) of unreliable users. For simulating
unreliable users, P of users will be randomly selected, and
their data will be added with random noise (ranging from 0 to
1), while the noise-added data will be considered unreliable.
For evaluating the robustness to unreliable users in our EPPFL,
we change P to obtain different results. This setting is
also applied in OFL [22] and SecProbe [6] for comparison.
Additionally, the privacy budget ϵ is set as 10 for SecProbe,
which is as same as the setting in the original SecProbe [6].

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

11

1 3 5 7 9 11 13 15 17 19
Number of iterations

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)

EPPFL
SecProbe
OFL

P=10%

(a)

1 3 5 7 9 11 13 15 17 19
Number of iterations

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)

SPDDL
SecProbe
OFL

P=15%

(b)

1 3 5 7 9 11 13 15 17 19
Number of iterations

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)

SPDDL
SecProbe
OFL

P=20%

(c)

1 3 5 7 9 11 13 15 17 19
Number of iterations

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)

SPDDL
SecProbe
OFL

P=25%

(d)

Fig. 5: Accuracy comparison with different proportions of unreliable users.

As shown in Fig. 5, the accuracy values change with the
increasing number of iterations, respectively on the proportion
of (P=10%, 15%, 20%, 25%). It can be observed that all the
accuracy changing curves gradually stabilize, and the final
accuracy of our EPPFL is higher than OFL [22] and SecProbe
[6], specifically being up to 95.78% in Fig. 5 (a), 93.73% in
Fig. 5 (b), 90.38% in Fig. 5 (c), and 87.35% in Fig. 5 (d).
Meanwhile, we find that when the same accuracy is obtained,
the required number of iterations in our EPPFL is less than
OFL and SecProbe, which means that the model in our scheme
can converge more rapidly than these two schemes. Moreover,
we observe that when the proportion of P reaches 25%, the
accuracy of OFL and SecProbe decreases quite rapidly, while
the accuracy of our EPPFL changes more slightly. These
above results are mainly caused by two reasons: (i) OFL has
not considered how to handle unreliable users. In contrast,
our scheme can erasing the low-quality data (also may be
a high-quality data but with different distributions) which is
obviously contrary to other data during the training process,
while remaining data can be processed through a preferable
method, and (ii) differential privacy technology, being utilized
in SecProbe for constructing privacy-preserving FL, may not
supply enough accuracy if high privacy should be guaranteed.
However, our SchUU exploits methods of excluding irrelevant
gradient components and weighted aggregation to guarantee
the aggregation result derived from the contribution of high-
quality users, while utilizing Pallier threshold cryptosystem
to accomplish our privacy-preserving scheme, all of which
establish the superiority of our SchUU.

C. Computation Overhead

1) Complexity Analysis: In this part, a comprehensive com-
plexity analysis is presented, focusing on both user-side and
server-side. Considering there are M users participating in
the model training, and each user’s model takes L gradient
components, the analysis is accomplished as follows.

(i) User side: O(M+L). The computation cost of each
user userm falls into 4 parts: (1) Encrypting the ciphertexts of
dis(glm, gl∗) and log(dis(glm, gl∗)), which takes O(L). (2) Exe-
cuting “SAP” for obtaining sumdisl, which takes O(M+L).
(3) Calculating Epk(Rl

m ·glm), which take O(L). (4) Executing
“SAP” for obtaining

∑m=M
m=1 Rl

mglm and
∑m=M

m=1 Rl
m, which

takes O(M+L). Overall, the computation complexity of each
user is O(M+L).

(ii) Server side: O(M·L+M+L). The computation cost
of the cloud server S can be broken up into 5 parts: (1) Aggre-
gating all users’ Epk(dis(g

l
m, gl∗)), which takes O(M+L). (2)

Executing “SAP” for obtaining sumdisl, which takes O(L).
(3) Encrypting log(sumdisl) as Epk(log(sumdisl)), which
take O(L). (4) Calculating R̃l

m=Epk(Rl
m), which takes O(M·

L). (5) Executing “SAP” for obtaining
∑m=M

m=1 Rl
mglm and∑m=M

m=1 Rl
m, which takes O(M+L). Overall, the communi-

cation complexity of the cloud server is O(M·L+M+L).
2) Experiment Results: As shown in Fig. 6, the computa-

tion cost of each user and the cloud server increases as the
number of each user’s components and the number of users
increase. Obviously, the overhead of the cloud server is far
more than the overhead of each user, respectively being up
to 219s and 32s in Fig. 6 (a), and being up to 219s and
32s in Fig. 6 (b). That means enormous computation tasks
are outsourced to the cloud server, which is very friendly to
edge user. Additionally, although the overhead of each user
will increase as the number of users increases, the increasing
rate is so low that abundant users can still join our EPPFL
ecosystem.

1000 2000 3000 4000 5000
Number of gradients per user

0

0.5

1

1.5

2

2.5

 T
o

ta
l r

u
n

n
in

g
 t

im
e

(m
s)

×105

User, EPPFL
Server, EPPFL

(a)

100 200 300 400 500
Number of users

0

0.5

1

1.5

2

2.5

 T
o

ta
l r

u
n

n
in

g
 t

im
e

(m
s)

×105

User, EPPFL
Server, EPPFL

(b)

Fig. 6: Computation overhead of EPPFL.

As shown in Fig. 7, the computation overhead is compared
between EPPFL and PPML [13]. Specifically, on both user-
side and server-side, the overhead of our EPPFL increases
linearly as the number of users increases, while the overhead
of PPML increases according to a quadratic curve. The reason
is that, based on above complexity analysis, our EPPFL takes

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

12

0 200 400 600 800 1000
Number of users

0

2000

4000

6000

8000

10000

12000

14000

 T
o

ta
l r

u
n

n
in

g
 t

im
e

(m
s)

User, EPPFL
User, PPML

(a)

0 200 400 600 800 1000
Number of users

0

1

2

3

4

5

 T
o

ta
l r

u
n

n
in

g
 t

im
e

(m
s)

×105

Server, EPPFL
Server, PPML

(b)

Fig. 7: Comparison of computation overhead between
EPPFL and PPML [13].

O(M+L) for each user and O(M·L+M+L) for the server,
nevertheless, the PPML takes O(M2+M·L) and O(L·M2)
respectively for each user and the server. As a result, when the
number of users reaches over 500, the computation overhead
of our EPPFL becomes lower than PPML on the user-side,
and the phenomenon is more obvious on the server-side.
Obviously, that makes our EPPFL more suitable for Internet
of Vehicles, which is constituted with tens of thousands of
edge users.

D. Communication Overhead

1) Complexity Analysis: In this part, we give a comprehen-
sive analysis of communication complexity for each user and
the cloud server, as follows.

(i) User side: O(L). The communication cost of each
user userm falls into 4 parts: (1) Uploading the ciphertexts
of dis(glm, gl∗) and log(dis(glm, gl∗)) to the cloud server,
which takes O(L). (2) Exchanging secret shares for obtaining
sumdisl, which takes O(L). (3) Receiving the ciphertexts
of Rl

m and uploading the ciphertexts of Rl
m·glm, which

respectively takes O(L). (4) Exchanging secret shares for
obtaining the plaintexts of

∑m=M
m=1 Rl

mglm and
∑m=M

m=1 Rl
m,

which takes O(L). Overall, the communication complexity of
each user is O(L).

(ii) Server side: O(M·L). The communication cost of the
cloud server S can be devided into 4 parts: (1) Receiving the
ciphertexts of dis(glm, gl∗) and log(dis(glm, gl∗)) from all users,
which takes O(M·L). (2) Executing “SAP” for obtaining
sumdisl, which takes O(M·L). (3) Sending the ciphertexts
of Rl

m and receiving the ciphertexts of Rl
m·glm, which take

O(M·L). (4) Executing “SAP” for obtaining
∑m=M

m=1 Rl
mglm

and
∑m=M

m=1 Rl
m, which takes O(M·L). Overall, the commu-

nication complexity of the cloud server is O(M·L).
2) Experiment Results: As shown in Fig. 8, the commu-

nication cost of each user and the cloud server are evaluated
along with the increasing number of each user’s components
and the number of users. Obviously, the overhead of the cloud
server is far more than the overhead of each user. Additionally,
the overhead of each user just increases as the number of each
user’s components increases, but keep consistent along with
the increasing number of users.

1000 2000 3000 4000 5000
Number of gradients per user

0

0.5

1

1.5

2

2.5

3

3.5

4

 T
o

ta
l t

ra
n

sm
it

te
d

 d
at

a(
B

yt
e)

×108

User, EPPFL
Server, EPPFL

(a)

100 200 300 400 500
Number of users

0

0.5

1

1.5

2

2.5

3

3.5

4

 T
o

ta
l t

ra
n

sm
it

te
d

 d
at

a(
B

yt
e)

×108

User, EPPFL
Server, EPPFL

(b)

Fig. 8: Communication overhead of EPPFL.

100 200 300 400 500
Number of users

0

1

2

3

4

5

6

7

8

 T
o

ta
l t

ra
n

sm
it

te
d

 d
at

a(
B

yt
e)

×107

User, EPPFL
User, PPML

(a)

100 200 300 400 500
Number of users

0

0.5

1

1.5

2

2.5

3

3.5

 T
o

ta
l t

ra
n

sm
it

te
d

 d
at

a(
B

yt
e)

×1010

Server, EPPFL
Server, PPML

(b)

Fig. 9: Comparison of communication overhead between
EPPFL and PPML [13].

Fig. 9 shows the comparison of communication overhead
between EPPFL and PPML [13]. It is observed that the
communication overhead of EPPFL is much lower than PPML
as the number of users increases, on both user-side and server-
side. On the user-side, PPML [13] requires not only encrypted
gradient to be sent for aggregation, but also keys to be sent
for encrypting the plaintext based on the key sharing protocol.
Besides, once some users being off-line during the training
process, the secret sharing protocol needs to be invoked for
recovering off-line users’ secret shares, which will be sent
to the server again. Thereby, huge communication should be
consumed for each user. However, in our EPPFL, only a few of
encrypted data need to be sent to the server, meanwhile, even if
some users drop out, no additional communication overhead
is required, which can be very friendly for edge users with
limited resources. On the server-side, PPML [13] needs the
server to receive encrypted gradients and secret shares from
users. Besides, additional interaction between the server and
on-line users is required to decrypt the aggregated results and
guarantee the users’ gradient confidentiality. As a result, the
communication complexity reaches O(M2+M·L). However,
our EPPFL is with a lower complexity of O(M·L). Thereby,
our EPPFL performs with a much smaller communication
overhead compared to PPML.

VI. RELATED WORK

For addressing the privacy issues in FL, many state-of-the-
art approaches have been proposed, mainly derived from three
technologies, i.e., homomorphic encryption (HE) [12], [28],

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

13

secure multi-party computation (MPC) [13], [29], [30], [31],
and differential privacy (DP) [32]. However, the fundamental
issue of unreliable users has not been considered initially, until
Zhao et al. [6] proposed the first privacy-preserving FL with
unreliable participants. Following Zhao et al.’s work, Xu et al.
[7] proposed another method. In this section, we discuss both
of these methods as follows.

For addressing the issue of privacy-preserving FL with
unreliable users, the first approach is proposed by Zhao et
al. [6], named SecProbe. In their scheme, for protecting
the privacy of participants, differential privacy is exploited
to perturb the loss function of the targeted model. Indeed,
their SecProbe is outstanding in terms of resource overhead.
However, the DP-based method protects data privacy based
on the added noise, as a result, the higher privacy is obtained,
the more accuracy is lost. Indeed, the work [9] specified that
current DP-based methods rarely offered acceptable trade-off
between privacy and accuracy for complex learning tasks,
through extensive experiments. Specifically, they claimed that
even the advanced variants [33], [34] of traditional DP-based
methods achieved accuracy loss close to 0.24, and none of the
current approaches obtained a zero accuracy loss, even if the
privacy was protected with a low level. Besides, research in
[10] has claimed that the approach for federated learning can
be fundamentally destroyed even if all exchanged parameters
are perturbed via DP-based technology. Recently, Xu et al.
[7] proposed a PPFDL scheme, where a novel method MethIU
was conducted to alleviate the negative impact of unreliable
users on the training accuracy, while the confidentiality of all
users’ related information was guaranteed through encrypting
MethIU. Actually, their scheme is based on the secure two-
party computation (2-PC) cryptosystems, where two servers
cooperate to handle the encrypted data uploaded by users.
However, for achieving their PPFDL, these two servers are
required not to collude with each other. Once the collusion
occurs, the entire security mechanism will be destroyed.
Thereby, this limitation makes their scheme unsuitable for real-
world application scenarios.

Compared with these approaches, our EPPFL utilizes
threshold Paillier cryptosystem to protect the privacy of users’
local gradients and reliability information. Based on our pro-
posed secure aggregation framework, only one single server
is needed to interact with users, while the privacy can be
guaranteed, even if some users collude with the cloud server.
Besides, a novel scheme is also presented to alleviate the
negative impact of unreliable users, which can minimize model
converge rate, improve model accuracy, and work with low
overhead of communication and computation.

VII. CONCLUSION

In this paper, we have proposed an efficient privacy-
preserving federated learning (EPPFL), where a novel scheme
SchUU is developed for mitigating the negative impact of
unreliable users, and a secure framework is conducted for
protecting users’ private gradient and reliability information.
Extensive experiment results demonstrate the our EPPFL with
high-level performance in terms of accuracy and efficiency.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grants 62020106013,
61972454, 61802051, 61772121, and 61728102, Sichuan Sci-
ence and Technology Program under Grants 2020JDTD0007
and 2020YFG0298, the Fundamental Research Funds for
Chinese Central Universities under Grant ZYGX2020ZB027.

REFERENCES

[1] F. Gao, J. Duan, Z. Han, and Y. He, “Automatic virtual test technology
for intelligent driving systems considering both coverage and efficiency,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14 365–
14 376, 2020.

[2] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 14 413–14 423, 2020.

[3] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in proceedings of
IEEE S&P, 2017, pp. 3–18.

[4] H. Sun, X. Ma, and R. Q. Hu, “Adaptive federated learning with
gradient compression in uplink noma,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 16 325–16 329, 2020.

[5] P. Luo, F. R. Yu, J. Chen, J. Li, and V. C. M. Leung, “A novel adaptive
gradient compression scheme: Reducing the communication overhead
for distributed deep learning in the internet of things,” IEEE Internet of
Things Journal, pp. 1–1, 2021, doi:10.1109/JIOT.2021.3051611.

[6] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-preserving
collaborative deep learning with unreliable participants,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 1486–1500,
2020, doi:10.1109/TIFS.2019.2939713.

[7] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. Deng, “Privacy-
preserving federated deep learning with irregular users,” IEEE Trans-
actions on Dependable and Secure Computing, pp. 1–1, 2020,
doi:10.1109/TDSC.2020.3005909.

[8] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional
mechanism: regression analysis under differential privacy,” Proceedings
of VLDB Endowment, vol. 5, no. 11, pp. 1364–1375, 2012.

[9] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, 2019.

[10] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of ACM CCS. ACM, 2017, pp. 603–618.

[11] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile clouds,”
IEEE Transactions on Emerging Topics in Computing, vol. 6, no. 1, pp.
97–109, 2018.

[12] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2018.

[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of ACM CCS,
2017, pp. 1175–1191.

[14] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proceedings of ACM CCS, 2018, pp. 35–52.

[15] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in proceedings of IEEE S&P, 2017, pp.
19–38.

[16] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: Two-party secure neural network training and prediction,”
in Proceedings of ACM CCS, 2019, pp. 1231–1247.

[17] G. Xu, H. Li, H. Ren, K. Yang, and R. H. Deng, “Data security issues
in deep learning: Attacks, countermeasures, and opportunities,” IEEE
Communications Magazine, vol. 57, no. 11, pp. 116–122, 2019.

[18] I. Damgrd and M. Jurik, “A generalisation, a simpli.cation and some ap-
plications of paillier’s probabilistic public-key system,” in International
Workshop on Practice and Theory in Public Key Cryptography, 2001,
pp. 119–136.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3130115, IEEE Internet of
Things Journal

14

[19] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=SkhQHMW0W

[20] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning ap-
proaching {LAN} speeds,” in 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17), 2017, pp. 629–647.

[21] L. WANG, W. WANG, and B. LI, “Cmfl: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), 2019, pp. 954–
964.

[22] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proceedings of NeurIPS, 2017, pp. 4424–4434.

[23] F. Sattler, S. Wiedemann, K.-R. Mller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,
pp. 3400–3413, 2020.

[24] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, 2020, pp. 1698–1707.

[25] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data), 2020, pp. 15–24.

[26] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing
federated learning with global imbalanced data in mobile systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59–
71, 2021.

[27] C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. Smith, “Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs,” Journal of Cryptology, vol. 28, no. 4, pp. 820–843,
2015.

[28] Y. Li, H. Li, G. Xu, T. Xiang, X. Huang, and R. Lu, “Toward secure and
privacy-preserving distributed deep learning in fog-cloud computing,”
IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11 460–11 472,
2020.

[29] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Se-
cure and verifiable federated learning,” IEEE Transactions on In-
formation Forensics and Security, vol. 15, pp. 911–926, 2020,
doi:10.1109/TIFS.2019.2929409.

[30] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, 2018, pp.
707–721.

[31] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New primitives for actively-secure mpc over rings with
applications to private machine learning,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1102–1120.

[32] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private
model publishing for deep learning,” in proceedings of IEEE Security
& Privacy, 2019, pp. 309–326.

[33] J. Lee, “Differentially private variance reduced stochastic gradient de-
scent,” in 2017 International Conference on New Trends in Computing
Sciences (ICTCS), 2017, pp. 161–166.

[34] B. Jayaraman and L. Wang, “Distributed learning without distress:
Privacy-preserving empirical risk minimization,” Advances in Neural
Information Processing Systems, 2018.

Yiran Li is currently working toward the Ph.D.
degree at the School of Computer Science and
Engineering, University of Electronic Science and
Technology of China (UESTC), China. His research
interests include Cryptography, Privacy-Preserving
Federated Learning, and Data Security.

Hongwei Li is currently the Head and a Professor
at Department of Information Security, School of
Computer Science and Engineering, University of
Electronic Science and Technology of China. He
received his Ph.D. degree from University of Elec-
tronic Science and Technology of China in 2008.
From October 2011 to October 2012, he worked as
a Postdoctoral Fellow at the University of Waterloo.
His research interests include network security and
applied cryptography. He serves as the Associate Ed-
itor of IEEE Internet of Things Journal, and Peer-to-

Peer Networking and Applications, the Guest Editor of IEEE Network, IEEE
Internet of Things Journal and IEEE Transactions on Vehicular Technology.
He currently serves as the Secretary of IEEE ComSoc CIS-TC.

Guowen Xu is currently a Research Fellow with
Nanyang Technological University, Singapore. He
received the PhD degree in cyberspace security from
the University of Electronic Science and Technology
of China (UESTC) in 2020. As the first author, he
has published more than 20 papers in top internation-
al conferences and journals, including ACM CCS,
ACM ACSAC, ACM ASIACCS, IEEE TDSC and
IEEE TIFS. He is the recipient of the Best Paper
Award of the 26th IEEE International Conference on
Parallel and Distributed Systems (ICPADS 2020) ,

and the IEEE Student Conference Award. His research interests include Secure
Outsourcing Computing and privacy-preserving issues in Deep Learning.

Xiaoming Huang Graduate degree, Senior engineer.
He is currently a general manager of Technology
Marketing Department of CETC Cyberspace Securi-
ty Research Institute Co., Ltd., His research interests
include cognitive domain security, cryptography and
information security theory, trusted computing and
trusted network technology, computer and commu-
nication security issues. He is a member of Sichuan
electronic information expert group.

Rongxing Lu (S’09-M’11-SM’15) is currently an
associate professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an assistant
professor at the School of Electrical and Electronic
Engineering, Nanyang Technological University (N-
TU), Singapore from April 2013 to August 2016. He
worked as a Postdoctoral Fellow at the University of
Waterloo from May 2012 to April 2013. He received
his PhD degree from the Department of Electrical
& Computer Engineering, University of Waterloo,

Canada, in 2012. He is presently a Fellow of IEEE Communications Society.
He currently serves as the Vice-Chair (Publication) of IEEE ComSoc CIS-TC.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:09:47 UTC from IEEE Xplore. Restrictions apply.

